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We investigate sufficient conditions on principal shift-invariant spaces S(,) in
order to provide prescribed approximation orders in Lp(Rd), 1<p<�. Our results
are applicable even in pathological cases where ,� (0)=0 and are based on the
wavelet-type decompositions of Besov spaces. � 1997 Academic Press

1. INTRODUCTION

A space of functions S is called shift-invariant if it is invariant under all
integer translates (shifts), i.e.,

f # S � f ( }+:) # S, \: # Zd.

We will focus our attention to the so-called principal shift-invariant sub-
spaces (PSI) S :=S(,), of Lp :=Lp(Rd), 1<p<�, that are generated by
the closure of the linear span of the shifts of , in the topology of Lp .

To unlock the approximation potential of a SI (shift invariant) space we
consider the stationary scale of spaces Sh, h>0,

Sh :=Sh(,) :=[ f ( } �h) : f # S].

It is widely accepted that the qualitative critarion by which we rate the
efficiency for approximation of such spaces is their approximation order.
Roughly speaking, we say that the scale of spaces Sh provides order of
approximation r>0 in Lp , 1<p<�, if for every sufficiently smooth func-
tion f the error of approximation from Sh satisfies

inf
s # Sh

& f &s&Lp=O(hr), h � 0, (1.1)

where the constant in O is independent of h.
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Our goal is to obtain weak assumptions on , so that (1.1) holds. First
we have to address what we really mean by sufficiently smooth. In the
literature one will not find a unique answer and there is a good reason for
this; there is a trade-off between the size of the set of smooth functions that
can be approximated with order r on the one hand, and on the other, the
conditions that one needs to impose on , in order to achieve the
approximation. So, one way of weakening the assumptions on , is to
reduce the set of the approximable functions X [BR, J2, R]. Traditionally
X was taken to be the Sobolev space W r

p , while for our purposes the role
of X will be played by the Besov spaces Br, q

p , 0<q�1 (see definitions
below).

Definition 1.2. Let 1<p<� and r>0. We say that the shift-
invariant space S provides order of approximation r in Lp(Rd) if for every
function f # Br, q

p , 0<q�1, the error of approximation from S satisfies

inf
s # Sh

& f &s&Lp�const hr & f &B4 p
r, q , h � 0,

where the above constant is independent of f and h.

Over the past years the problem of determining the approximation
orders of SI spaces has been basically approached in two different ways.
The first is the traditional one in which the approximation schemes as well
as the error analysis are given at the time domain and they generally
exploit the fact that polynomials enjoy locally good approximation proper-
ties. These methods have been associated with the so-called Strang�Fix
conditions

(i) ,� (0){0,

and (1.3)

(ii) D:,� (2?&)=0 for all |:|<r and & # Zd "[0],

and the approximation schemes that are employed are given by what are
called quasi-interpolant operators. These operators exercise the fact that
under certain decay assumptions on ,, the Strang�Fix conditions guarantee
that the space 6<r (of polynomials of degree <r) lies in �h Sh. This
approach was initiated by Schoenberg [S] and has been followed by
several mathematicians [BJ, CJW, DM, LC, LJ, SF] (for complete
references see [BR]).

The second approach was initiated by de Boor and Ron [BR] (for
p=�) and has been extended to various settings in [BDR, K1, K2, R,
J1, J2, Z]. In these references the approximation is taking place in the
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frequency domain and the techniques employed have their roots in harmonic
analysis. The main advantage of the latter methods is that by and large
they require no a priori assumptions on ,.

However, the common denominator in the above references (with the
exception of [BDR, R, Z] which treat the case p=2) is that ,� (0){0; it is
one of the goals of our present work to circumvent this condition. We will
do this by means of the wavelet-type decompositions of various function
spaces.

Wavelet-type decompositions present themselves as a new powerful tool
for analyzing the approximation properties of SI spaces and allow one to
decompose a function f into basic building blocks [�&, j] (&, j) # Z_Zd , called
wavelets (or sometimes atoms), that enjoy superior smoothness and decay
properties, i.e.,

f ( } )= :
& # Z

:
j # Zd

b&, j�&, j ( } ). (1.4)

Moreover, the functions [�&, j] (&, j) # Z_Zd are generated by means of a single
function �, that is,

�&, j ( } ) :=�(2& } &j). (1.5)

The idea is to construct the approximation in two different phases. In the
first, which does not really involve the SI space, we approximate, with the
right accuracy, the function f with a truncated version of its wavelet
decomposition f &(h),

f &(h)( } ) := :
&�&(h)

:
j # Zd

b&, j �&, j ( } ),

and in the second phase, using the approximation potential of the SI space,
we approximate individually each wavelet �&, j with an element sh

&, j # Sh.
Our approximation scheme is then given by

s&(h)( } ) := :
&�&(h)

:
j # Zd

b&, j sh
&, j ( } ).

One of the advantages of this method is that, in effect, it disengages the
approximation properties of SI spaces from particular smoothness spaces
since one only needs to approximate ideal functions, namely �&, j , which
can be chosen depending on the application.

These ideas have been used before in [K3] and in [J2]. In [K3] we
used building blocks that were sufficiently smooth and compactly supported
while in [J2] they were required to have compactly supported spectrum
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(i.e., the support of the Fourier transform). Here, similarly to [J2], we will
concentrate in decompositions generated by functions in C0

�@ (the space of
all functions that the Fourier transform maps in C �

0 ). However, our initial
analysis will hold for more general wavelet-type decompositions.

One of the main characteristic properties of wavelets, which we are going
to take advantage of, is that they have zero mean value. This will basically
allow us to use approximants whose Fourier transform vanishes at the
origin. On the other hand, this is also the reason for restricting p to
1<p<� because it is known that such decompositions do not hold for
p=1, �, in the framework of Lp spaces.

Throughout this paper, we shall use standard multi-index notation;
for every x=(x1 , ..., xd) # Rd and :=(:1 , ..., :d) # Nd, we define x: :=
x:1

1 } } } x:d
d , |:| :=:1+ } } } +:d , and D: :=�|:|�(�:1x1 } } } �:dxd).

By S :=S(Rd) we denote the Schwartz space of infinitely differentiable,
rapidly decreasing functions on Rd and by S$ :=S$(Rd) its dual, the space
of tempered distributions. The Fourier transform f� of a summable function
is defined by

f� (!) :=|
Rd

f (x) e!(&x) dx,

where e!( } ) :=ei( } )!.
We shall also denote by 6 the space of all polynomials on Rd and

with S$�6 the space of equivalence classes of distributions in S$ modulo
polynomials.

Let now � # S with the following properties:

(i) supp �� /[2&1�|!|�2]

(ii) |�� (!)|�const>0 if 3�5�!�5�3, (1.6)

(iii) :
& # Z

|�� (2&!)| 2=1 if !{0.

We set �&( } ) :=2&d�(2&), & # Z. For 0<r<�, 1�p��, and 0<q��,
the homogeneous Besov space B4 r,q

p is defined to be the set of all f # S$�6
such that

& f &B4 p
r, q :=&(2&r &�& V f &Lp)&& lq(Z) (1.7)

is finite.
An equivalent form of (1.7) is also given by (see [FJ])

& f &B4 p
r, qr&(2&r &(2&&d�p |�& V f ( j2&&)| ) j& lp(Zd))&& lq(Z) . (1.8)
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We note also that the homogeneous Besov spaces B4 r, q
p owe part of their

name to the fact that the seminorm & }&B4 p
r, q enjoys the following property

(see [T]):

& f (t } )&B4 p
r, q�const tr&d�p & f &B4 p

r, q , t>0. (1.9)

By adding the norm & f &Lp we get the inhomogeneous Besov space Br, q
p

equipped with

& f &Bp
r, q :=& f &Lp+& f &B4 p

r, q .

For any domain 0/Rd, 1�p��, and m # N we denote by W m
p (0) the

Sobolev space defined by

W m
p (0) :={ f : & f Wp

m(0 ) := :
|:|�m

&D:f &Lp(0)<�= .

For 1�p�� we define Lp :=Lp(Rd) to be the set of all functions f such
that the norm

& f &Lp
:=" :

: # Zd

| f ( }&:)| "Lp([0,1]d )

is finite. The embedding l1(Zd)/lp(Zd) gives that

Lp(Rd)/Lp(Rd), 1�p��,

while L1=L1 .
Finally for 1<p<� we define q by

q :={2,
(1&1�p)&1,

1<p�2
2�p<�,

(1.10)

and for every x>0 we denote by WxX the least integer greater than x.

2. WAVELET-TYPE APPROXIMATION

In this section we are going to carry out both phases of our approxima-
tion. We will present two main results. The first result is going to concern
more general wavelet-type decompositions, while in the second result we
will focus our attention on decompositions associated with wavelets in C0

�@ .
We note also that the results presented in this section hold for general shift-
invariant spaces, not only for principal ones.

261WAVELET-TYPE DECOMPOSITIONS



File: 640J 301706 . By:CV . Date:27:01:97 . Time:14:00 LOP8M. V8.0. Page 01:01
Codes: 2868 Signs: 1549 . Length: 45 pic 0 pts, 190 mm

Definition 2.1. We say that a family of functions 9 :=[�&, j] (&, j) # Z_Zd ,
generated by a singleton function � # Br,q

p , is admissible for Br, q
p if it satisfies

the following three conditions:

(a) For every f # Br,q
p there are coefficients [b&, j] (&, j) # Z # Zd such that

f ( } )= :
& # Z

:
j # Zd

b&, j�&, j ( } ), in Lp .

(b) There exist constants such that for every f # Br,q
p ,

const & f &B4 p
r, q�&(2&r &(2&&d�pb&, j) j & lp(Zd))&& lq(Z)�const & f &B4 p

r, q .

(c) If f &0 :=�&�&0
�j # Zd b&, j�&, j , &0 # N, then,

& f & f &0&Lp�const 2&&0r& f &B4 p
r, q .

In the literature one will find a variety of admissible families, ranging
from functions in C0

�@ to compactly supported ones. For instance, the
,-transform of Frazier and Jawerth gives rise to admissible families in C0

�@ ,
while on the other hand the booming field of wavelets contains paradigms
of admissible families in C k

0 with k arbitrarily large. In this paper we
concentrate at the ,-transform mainly because we want to study the
approximation orders of shift-invariant spaces generated by functions with
mean value zero.

Our first result reads as follows:

Theorem 2.2. Let 1<p<�, 0<q�1, and r>0. Assume also that
there exists a family 9, generated by a function �, which is admissible for
Br, q

p and such that

dist(�, Sh, Lp)�const hr, h � 0. (2.3)

Then, for every f # Br, q
p ,

dist( f, Sh, Lp)�const hr & f &B4 p
r, q , h � 0. (2.4)

Of course, for every normed space (X, & } &), we have adopted the
notation

dist( f, Sh, X) := inf
s # Sh

& f &s&X .

Proof of Theorem 2.2. We note that it is sufficient to establish (2.4) only
for dyadic values of h, i.e., h=2&&0, where &0 is a sufficiently large natural
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number. Indeed, by letting &(h) # N be such that 1�2<h2&(h)�1, it easily
follows by change of variables that

dist( f, Sh, Lp)�const dist( f (h2&(h) } ), S2&&(h)
, Lp)

�const 2&&(h) r & f (h2&(h) } )&B4 p
r, q

�const hr & f &B4 p
r, q ,

where in the last inequality we used the homogeneity (see (1.9)) of & }&B4 p
r, q .

Thus, without loss of generality we assume that h=2&&0, &0 # N.
Moreover, if 9 :=[�&, j], (�&, j ( } ) :=�(2& } &j)) is an admissible family we
can assume that for every & # N there exists s& # S such that

&�&s&(2
& } )&Lp

�const 2&&r.

From (c) of Definition 2.1 we also have

" f & :
&�&0

:
j # Zd

b&, j �&, j"Lp

�const 2&&0r & f &B4 p
r, q . (2.5)

Therefore, it suffices to approximate f &0 :=�&�&0
�j # Zd b&, j �&, j from S2&&0

with the correct order. This suggests the approximation scheme

s&0= :
&�&0

:
j # Zd

b&, j s&0
&, j ,

where s&0
&, j ( } ) :=s&0&&(2

&0 } &2&0&&j). It is easily seen that s&0 # S2&&0.
Moreover,

& f &0&s&0&Lp=" :
&�&0

:
j # Zd

b&, j [�&, j&s&0
&, j]"Lp

� :
&�&0

" :
j # Zd

b&, j [�&, j&s&0
&, j]"Lp

�2&&d�p :
&�&0

&(b&, j)j &lp
&�&s&0&&(2

&0&& } )&Lp

�const 2&&0r :
&�&0

2&r &(2&&d�pb&, j) j &lp

�const 2&&0r & f &B4 p
r, 1

�2&&0r & f &B4 p
r, q , (2.6)

where in the second inequality we used that &�j # Zd aj g( }&j)&Lp�
&a&lp

&g&Lp
, \g # Lp , (a) # lp (see [JM]) and in the last the embedding

lq
/� l1 , 0<q�1.
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Finally, employing the triangular inequality,

& f &s&0&Lp�& f & f &0&Lp+& f &0&s&0&Lp

�const 2&&0r & f &B4 p
r, q . K

Next we consider a function � that satisfies (1.6). Our goal is to prove
that 9 :=[�&, j] (&, j) # Z_Zd is an admissible family. It is well known that for
f # Lp , 1<p<�,

f ( } )= :
& # Z

�& V �� & V f ( } ),

where �� ( } ) :=�(&} ). Furthermore, it was proved in [FJ, Lemma 2.1] that

�& V �� & V f ( } )= :
j # Zd

�� & V f ( j 2&&) �(2& } &j), (2.7)

which implies that

f ( } )= :
& # Z

:
j # Zd

�� & V f ( j 2&&) �(2& } &j). (2.8)

(The convergence of the above series is considered in the sense of Lp .)
Thus, taking into account (1.8) and (2.8), 9 will be an admissible family

if we can prove condition (c) of Definition 2.1.
For this, we let f &0 :=�&�&0

�& V �� & V f. It follows easily that

& f & f &0&Lp=" :
&>&0

�& V �� & V f"Lp

�2&&0r :
&>&0

2&r &�& V �� & V f &Lp

�const 2&&0r :
&>&0

2&r &�& V f &Lp

�const 2&&0r & f &B4 p
r, q

�const 2&&0r & f &B4 p
r, q . (2.9)

Adapting Theorem 2.2 to this specific admissible family we have the
following theorem:

Theorem 2.10. Let 1<p<�, 0<q�1, and r>0. Let also S be a shift-
invariant space. If for every ' # S with supp '̂/0 :=[2&1�|!|�2],

dist(', Sh, Lp)�const hr, h � 0. (2.11)
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then, for every f # Br, q
p ,

dist( f, Sh, Lp)�const hr & f &B4 p
r, q , h � 0.

The natural thing to do next is to investigate inequality (2.11) and to
impose assumptions on , so that the PSI space S :=S(,) will provide
order of approximation r.

3. THE STRANG�FIX CONDITIONS

The approximation properties of PSI subspaces of L2 have been com-
pletely characterized by de Boor et al. [BDR]. Using the Hilbert-space
structure of L2 and the isometry of the Fourier transform, they achieved a
breakthrough proving the following theorem:

Theorem 3.1. Let , # L2(Rd). Then, the principal shift-invariant space S
provides approximation order r>0, in L2(Rd), if and only if

| } |&r \1&
|,� | 2

[,� , ,� ]+
1�2

is in L�([&?, ?]d), where [,� , ,� ] :=�; # 2?Zd |,� ( }+;)| 2.

However, we should caution the reader that the definition of approxima-
tion orders in [BDR] deviates slightly from ours, since they are defined in
terms of the potential space W r

2 instead of the Besov space B4 r, q
p .

Refining this theorem Zhao [Z] proved:

Theorem 3.2. Let , # L2 ; S provides order of approximation r>0 if and
only if there exists a constant and a neighborhood of the origin 2 on which

:
; # Zd"0

|,� (!+2?;)| 2�const |!| 2r |,� (!)| 2.

For the next corollary we will need the fractional Sobolev Spaces W *
2(2)

where *>0 and 2 is an open subset of Rd. For their definition we refer the
reader to [A].

Corollary 3.3. Let , # L2 , r # N, and 0�k<r. Let also A :=
�; # 2?Zd"0 (2+;), where 2 is some open cube centered at the origin. If
,� # W *

2(A) for some *>r+d�2 satisfies
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D#,� =0 on 2?Z d"0 for all |#|<r, (3.4)

0<const�|,� (!)| |!|&k, for ! # 2, (3.5)

then S provides approximation order r&k.

Proof. It follows from (3.4) that for every ; # 2?Z d"0,

|,� (!+;)|�const |!| r max
|#|=r

&D#,� &L�(2;) , for ! # 2, (3.6)

where 2; :=2+;. From the Sobolev embedding theorem (see [A, p. 217]),
since *>r+d�2, we know that

max
0�|#|�r

&D#,� &L�(2;)�const &,� &W2
*(2;)

for some constant independent of ;. Employing (3.5) in (3.6) we obtain
that

const
|,� (!+;)|

|!| r&k |,� (!)|
�

|,� (!+;)|

|!| r
�const &,� &W2

*(2;) , ! # 2, ; # 2?Zd "0.

From the last inequality one easily derives, using the set-subadditivity of
& }&2

W2
*(A) (see [A]) that

:
; # Zd"0

|,� (!+2?;)| 2�const |!| 2(r&k) |,� (!)| 2 &,� &2
W2

*(A) ,

and the result follows in view of Theorem 3.2. K

It is obvious that in order to achieve better orders of approximation one
should seek the smallest k that satisfies (3.5).

We will try to extend the above corollary to 1<p<� by means of
Theorem 2.10. We will give sufficient assumptions on , so that

dist(', Sh, Lp)�const hr, h � 0,

where ' is any function in S with

supp '̂/0=[! : 1�2�|!|�2]. (3.7)

For this purpose we are going to employ the same approximation scheme
Th(') with [BR, K1, K2, J2], defined by

Th(')@ := :
: # Zd

'̂(!+2?:�h)

,� (h!+2?:)
,� (h!).

First we verify that Th(') # Sh.
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Lemma 3.8. Let , # L1 & Lp and h # (0 . .1]. If ,� {0 on [! : h�2�
|!|�2h], then Th(') # Sh.

Proof. Since ,� does not vanish on [! : h�2�|!|�2h] it follows from
Wiener's Lemma (see [Ru]) that

f :=\ '̂(!)

,� (h!)+
6

# L1 .

Moreover, f� is continuous on its support 0. The 2?�h-periodic extension
of f� is given by

{(!) := :
: # Zd

'̂(!+2?:�h)

,� (h!+2?:)

whose Fourier series representation is

hd :
j # Zd

f (hj)e&ijh!.

Moreover, since f� is compactly supported, one can show that
&( f (hj))&l1

r& f &L1
(for a detailed proof see [J2]). By Fourier inversion

now it follows that

Th(')= :
j # Zd

f (hj) ,(x�h&j ),

which is an element of Sh since

&Th(')&Lp�const &( f (hj))&l1
&,&Lp . K

A version of the following theorem was given in [J2].

Theorem 3.9. Let 1�p�� and ' be in C� with supp '/0. If 0<
h�1 and , # L1 & Lp is such that ,� does not vanish on [! : h�2�|!|�2h],
then

dist(', Sh, Lp)�" '̂

,� (h } )"W m
�

&,� (h } )&Wq
m(0+h&12?Zd"0) , (3.10)

where m is an integer with m>d�q (see (1.10)).
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Proof. For p�2 using the embedding L2
/� Lp we get

dist(', Sh, Lp)�"\'̂(!)& :
: # Zd

'̂(!+2?:�h)

,� (h!+2?:)
,� (h!)+

6

"
Lp

="\ :
: # 2?Zd"0

'̂(!+2?:�h)

,� (h!+2?:)
,� (h!)+

6

"
Lp

�const "\ :
: # 2?Zd"0

'̂(!+2?:�h)

,� (h!+2?:)
,� (h!)+

6

"
Lp

.

Invoking the inequality & f &Lp
�const &(1+| } | )m f &Lp , m>d�q, we get that

dist(', Sh, Lp)�const " (1+|x| )m \ :
: # 2?Zd"0

'̂(!+2?:�h)

,� (h!+2?:)
,� (h!)+

6

(x)"L2

�const " :
: # 2?Zd"0

'̂(!+2?:�h)

,� (h!+2?:)
,� (h!)"W2

m

�const " :
: # 2?Zd"0

'̂(!+2?:�h)

,� (h!+2?:) "W m
�

&,� (h } )&W2
m(0+h&12?Zd"0)

=const " '̂

,� (h } )"W m
�

&,� (h } )&W2
m(0+h&12?Zd"0) .

Similarly for 2�p we use the well-known inequality & f� &Lp�const & f &Lq ,
to derive

dist(', Sh, Lp)�"\ :
: # 2?Zd"0

'̂(!+2?:�h)

,� (h!+2?:)
,� (h!)+

6

"
Lp

�const " (1+|x| )m \ :
: # 2?Zd"0

'̂(!+2?:�h)

,� (h!+2?:)
,� (h!)+

6

(x)"Lp

�const " :
: # 2?Zd "0

'̂(!+2?:�h)

,� (h!+2?:)
,� (h!)"Wq

m

�const " '̂

,� (h } )"W m
�

&,� (h } )&Wq
m(0+h&12?Zd"0) . K

Next we will estimate the size of the right-hand side of (3.10) by isolating
the zeroes of , at the origin.
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Lemma 3.11. Let P be either a homogeneous polynomial of degree k
which vanishes only at the origin or P( } )=| } |k, k # N. Let also , be such that

,� ( } )=P( } ) g( } ) (3.12)

in a neighborhood of the origin 2 where g # Cm(2), m>d�q, and g(0){0.
Then

" '̂

,� (h } )"Wm
�

�const h&k, h � 0.

Proof. It follows from the assumptions that there exists a neighborhood
of the origin 01 such that g(!){0, \! # 01 . For h sufficiently small, say
0<h�h0 , g(h!){0 on 0. Thus,

" '̂

,� (h } )"Wm
�

=h&k " '̂(!)�P(!)

g(h!) "Wm
�

�const h&k. K

Finally, to find an upper bound for &,� (h } )&Wq
m(0+h&12?Zd"0) we are going

to use the following lemma from [J2].

Lemma 3.13. Let 1<p<� and r # N. Let also ,� # W*
q(=2+2?Zd "0)

where =>0 and * :=Wr+d�qX. If , satisfies

D#,� =0 on 2?Z d"0 for all |#|<r (3.14)

then, for m :=Wd�qX ,

&,� (h } )&Wq
m(0+h&12?Zd "0)=O(hr), h � 0.

Proof. See [J2, Theorem 7.3]. K

Theorem 3.15. Let 1<p<� and r, k # N with r>k. We define
m :=Wd�qX , * :=Wr+d�qX , and we assume that 2 is a neighborhood of the
origin and P is as in Lemma 3.11. If , # L1 & Lp satisfies:

(i) ,� # W *
q(2+2?Zd"0),

(ii) ,� ( } )=P( } ) g( } ) in 2 where g # Cm(2) and g(0){0,

(iii) D#,� =0 on 2?Zd"0 for all |#|<r,

then Sh provides order of approximation r&k in Lp(Rd).
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Proof. According to Theorem 2.10 it is sufficient to prove that

dist(', Sh, Lp)�const hr&k, h � 0. (3.16)

However, from Theorem 3.9 the left side of this inequality is dominated by

" '̂

,� (h } )"Wm
�

&,� (h } )&Wq
m(0+h&12?Zd"0) .

Employing now Lemmas 3.11 and 3.13, the theorem follows. K

We note that similar results (with k=0) have been given by Johnson
[J2, Theorems 7.3 and 7.4]. However, there exists a fundamental difference
between the results of Johnson and Theorem 3.15; the analysis in [J2] does
not allow the treatment of cases where ,� (0)=0.
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